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Having in mind the development of a technical tool to treat fermionic systems,
we propose a Kadanoff-Wilson block renormalization transformation employ-
ing unusual averages (an inevitable artifact due to the specificity of lattice
fermions and to the desired transformation properties). The free propagator is
decomposed into operators associated to dilferent momentum scales and with
orthogonal relations, and the effective actions generated from the Dirac
operator by the transformations present uniform exponential decay. We argue
to show the usefulness of the formalism to study correlation functions of inter-
acting fermions.

KEY WORDS: Orthogonality between scales; renormalization group;
fermions.

1. INTRODUCTION

Renormalization group (RG) techniques have been used as a successful
tool for rigorous analysis of several fields: problems ranging from classical
mechanics to quantum many-body systems have been treated via such an
approach. A large and useful formalism has been developed,'?' although
usually quite intricate (leading to the search for simplifications).
Recently,” ¥ studying the well-known lattice dipole gas [and (Vg)*
models] with the RG techniques already developed in ref. 1 but emphasiz-
ing the property of orthogonality between different momentum scales in
the transformation (property associated to the wavelets implicit in the
structure of the block RG), we established exact and simple formulas for
the correlation functions with a good control of the dominant and sub-
dominant terms. The nonproliferation of terms and the simplicity of the
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final formulas obtained in that work showed us the usefulness of the
“orthogonality of scales” property to technically improve the RG
formalism.

Concerning the fermionic models, however, the implementation of a
similar RG transformation (i.e., a Kadanoff~-Wilson block-spin RG with
the orthogonal property) presents some problems. We recall that even the
formulation of lattice fermionic theories is troublesome: the doubling of the
free spectrum due to a naive discretization of the Dirac equation is well
known.

The flow of the Wilson action via a block RG transformation has been
rigorousty studied in ref. 5: using a transformation with a Gaussian weight
function (which breaks chiral symmetry explicitly), the fixed point is
obtained and the locality of the effective actions (uniform exponential
decay for the actions rescaled to the unitary lattice) is shown as well as
other useful results (such as the telescopic decomposition of the free
propagator—details in the next section). However, the orthogonality
between scales is lost, the property responsible for the simplicity of the
correlation formulas for interacting systems, as said above. Also, in ref. 5,
using a transformation with a & weight function (which “abruptly”
separates the scales leading to the orthogonal property), the unexpected
fact is shown that the effective actions do not maintain the uniform
exponential decay, which, unfortunately, makes the transformation inade-
quate to treat interacting fermions.

Thus, having in mind the development of RG techniques and based on
the search for “technical simplicity,” we propose in this paper an RG trans-
formation for lattice fermionic models that (initially) applied to the free
action gives us a telescopic decomposition of the free propagator in terms
of operators with the property of orthogonality between scales, and that
also makes local all the effective actions (kernels with uniform exponential
decay). We hope later, using this orthogonal property and the local
actions, to study interacting fermions. Specifically, we believe that this RG
transformation will make easier the study of correlation functions (see
Section 5).

The rest of the paper is organized as follows. In Section 2 we introduce
some definitions, review some recent results, and state the theorem about
the uniform exponential decay of the effective actions (and other operators).
In Section 3 we present an RG transformation with § weight function
but with the average over blocks of spins given by a complex (imaginary)
perturbation of the usual one (and also prove that any real perturbation
does not lead to a transformation with the required properties). Section 4
is devoted to technical proofs of decay properties, and Section S to final
comments.
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2. DEFINITIONS AND RECENT RESULTS

In refs. 3 and 4, via block RG techniques and (emphatically) using the
“orthogonality of scales” property, we study the correlation functions of
lattice scalar field models such as (V¢)* and dipole gas, obtaining exact and
simple formulas which separate the dominant and subdominant terms and
make clear the long-distance behavior. Considering models described by
interactions on unitary finite lattices (with L™ points; the thermodynamic
limit is considered later) such as

H($)=13bo(, 4¢) + V(4) (2.1)

where ¢(x)eR, xe AycZ? d>3, A=9'0 (for Dirichlet boundary condi-
tions, otherwise plus a reguralizer), V' a function of 0,¢(x), and using the
block RG transformation

exp[—f’(l//)]=fe><p[—9’f(¢)] o(Cé—y) D¢ (22)

where e R, D =TT 4, d(x), (Co— ) =TT, .4,_, 0(Ch(x) —Y(x)),
with Cg(x) meaning the rescaled average (canonical scaling) over blocks
b%  of size L, centered in Lxe 4,

Co(x)=L“=22L=1 % ¢(y) (23)

vert,

we follow the flow of the generating function Z(h)=[exp[—#(¢)+
(h, $)] D¢, obtaining, after n steps of the RG transformation (n < N),

Z(hy=cexp[i(h, P,h)]
X f exp{ —V"(0,[M,$+G,h])—1b,(¢, 4,4)} D  (24)

where ¢ does not depend on #; b, is the wavefunction renormalization
constant at step n; V” is the nth irrelevant perturbative potential (the
potential without its marginal quadratic part); the propagators P, and G,
are written in terms of operators describing interactions in different
momentum scales (and associated with a telescopic decomposition of the
free propagator and the lattice wavelets'**); 4,, is a “local” effective action
(exponential decay), which goes with » to the Gaussian fixed point; and
M, is the n-step minimizer (also with exponential decay).

Once more, we emphasize the simplicity of the formula obtained for
the generating function: due to the orthogonal property there is no mix
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between different momentum scales (see the expressions for P, and G, in
refs. 3 and 4).

Turning to the fermionic systems, we observe that the implementation
of a similar RG transformation with the properties related above is not,
say, immediate.

Free lattice (and continuous) Euclidean fermions are treated in ref. S
using block RG transformations with a Gaussian and also a J weight
function, obtaining expressions analogues to those described above. The
considered actions, living on lattices with spacing ¢ (initially), are given by
the e-lattice Wilson version of the Dirac operator,

d ot — asf 1 d 1
D=7% h( . ">_-am, #= Y S@rah 23
ot 2 2 uoi €

where 0}, is the e-lattice forward derivative, 6:}‘ is its adjoint, and y, are
anti-Hermitian Dirac matrices obeying y,7,+ 7.7, = 26,,. The extra term
(breaking chiral symmetry) is introduced to suppress the doubler fermions
and vanishes in the continuous limit (¢ — 0). The flow of the free action is
studied via the RG transformation T ; defined as

exp(r, D1x) = LT, L exp(-, D-)1(% %)

=N | dj dy expla(Le)~* (71— QF, x — Q¥)] exp(, DY)
(2.6)

where V, ¢ (%, x) are independent Grassmann algebra generators (with
suppressed spinor and lattice indices), and mean ¢ (Le) lattice fields. Q is
the usual arithmetic averaging operator over a block of side size Le, and
a is a real, positive parameter (in the limit ¢ —» o0 we have the RG transfor-
mation with § weight function). N is a normalization constant such that

[ expU7 Dix1 d dy = [ expld, DY if dy

Successive RG transformations are introduced obeying the semigroup
property

Lk-1g Lk-2 & —_ &
Ta,L T(I.L '“Ta.L—Tak.Lk

where T¢ ,« is defined as in (2.6) with a,=[(1—L"")/(1—-L"*)]a
replacing a, L* replacing L, and Q, (arithmetic averaging operators over
blocks of side L*e) replacing Q. Irrespective of the domain lattice (i.e., of
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the lattice spacing), we use the same symbol for the arithmetic averages.
With these transformations, after simple algebraic manipulations, the
telescopic decomposition of the free propagator is obtained:

n—1

D~i=Y% [D”IQ}‘DijD_l—D_1 ;+[Dj+le+lD_l]

j=0
+D_1Q;’;D"Q"D_l

n—1
=Y M;M!+M,D 'M] (2.7)

j=0

where Do=D, Qo=1; and M;=D"'Q/D,, M!=D,0,D~" are L’ (¢) to
¢ (L’) lattice operators; I;=D;'—D7'Q'D;, , QD" is an Le lattice
operator. It is shown that the kernels of M;, M ;.‘, and I'; have exponential
decay such that

1 1
MM (x, x')~Wexp<—E Ix—x'|>, x, x'eeZ? (28)

that is, (2.7) gives us a decomposition into momentum scales (L’¢)~".
Rescaling the operators (after k steps) to the unitary lattice, it is
shown (Theorem III.1 in ref. 5) that, for a small, the following result holds:

Theorem 2.1. 3f>0, ¢>0 independent of k such that

|D e x, x") < cexp[—f |x—x|]

| L ey(x, X" ) < cexp[— B |x—x'|]

|D G, QEDily, x)| <cexp[—f |y —x|]
|D Qi D) (x, ) <cexp[—f1x—yl]

for y, y'e L™*Z% x, x' € Z% I',, D, in the unitary lattice, and D, the
Dirac operator (Wilson version) in the lattice = L%

This theorem is proved in Section 4 for the new RG to be proposed.
The problem with the RG transformation with finite a is that we have

Duy=a(I+a, QD) 01" (2.9)

[formula (3.11) in ref. 5] and there is no orthogonality between the
operators {M;I;M}|7Z', M,D ;' M in the “norm” (., D-) [which may

j=1
be checked using the formulas below (2.7)]. For infinite g, i.e., considering
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the RG transformation with the § weight function, the effective actions
become

D(k)=(Q/¢D(_,,)1QD_l (2.10)

following the orthogonal property, but losing the uniform exponential
decay of these actions (i.e., invalidating Theorem 2.1), as proved in
Section 4 of ref. 5 (more details below), which should lead to a “local”
fixed point.

Thus, to treat fermions, we are forced to develop a more elaborate
formalism.

3. UNUSUAL AVERAGES FOR BLOCK
RG TRANSFORMATIONS

The property of orthogonality between scales, as we have noted, seems
to be associated with the RG transformation with 6 weight function, which
is intuitively expected since the & function recalls separation in a sharp
manner. Another way to realize an orthogonal decomposition into different
momentum scales is to introduce characteristic functions in the Fourier
transform of D!, but this leads to operators without exponential decay in
position space (and so does not interest us).

The algebraic structures of the operators related to the “d-function”
transformation may be obtained by direct inspection, and are given by
formulas (2.7) and (2.10). Note that the operators depend only on the
initial action D and on the average Q (besides, of course, on the RG weight
function). Thus, we shall investigate unusual averages in a transformation
with & weight function.

We define general averages Q over blocks of “side L” (although, for
one block, sities outside it may also contribute to the average) as

Of (u)=Y W(x) f(Lu—x), x,uetZ?

1 o ~ i
=Gat) o) Tp)er dp (3.1)

where pe (—n/¢, n/E]¢, and W(p) is the Fourier transform of W(x), to be
properly chosen [the same for f(p)]. Writing p=p'/L+ /L, where
|p,| </, |=2mm/&, |m,| <L/2, ie, meZ?n(—L/2, L/2)“, we have

@ =2 ¥ (5+1)7(5+7) (3.2)
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and for the adjoint,

- (2 D i (24 D) 7
@ (&+7)=7(5+1) 7t (33)
where W means the complex conjugate to .
Hence, for the inverse of effective action,
1 - pl l 2 o pl 1 -
-1t ~ " — — W £ — D—l £ _ ’
(@D~ (M) =T (L+L>] (+1) 7
=D'(p') f(p) (3.4)

To obtain the expression for (Q,D'Q1)~' we check the relation
between Q, and Q. Due to the semigroup property of an RG transforma-
tion it follows that O, ;= 0,Q;. This property (and, of course, the for-
mulas due to the RG with é weight function) leads to the orthogonality
between scales: taking M, I ;M| and M, "M, j+i, as an example, from

i

the formulas below (2.7) we have MJ-I“JAM}.”DM,-I",-M;r =0. Thus,

0, f(uy=3, W,(x) f(L"u—x)

= Z W(xl) W(xn)f(L"u_L"_lxl _L"42x2_ "'xn) (35)

Xy n

(Q, meaning average over blocks “size L"”). Hence,
Wn(L"- 1xl + L~ ZXZ + -+ xn) = W(xl) e W(xn) (36)
and

Wp)=3 Wlx))e™? H "N . 3 Wix,)e ™
X1 ¥n

Writing for the term with x,

P+ T ]! 2nm L
pP= Ll,,_1]7 ple<_gazj|a [|=‘—l’ |mll<

we have
Y W(x)e P M= Y Wix e M= W(p))
Xy X1

(where p, = L"~'p—1,). With similar considerations,

W.(p)=W(p,) W(p,)--- W(p._\) W(p)=W(L""'p) W(L"~%p)--- W(p)
(3.7)
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[since W(p) has period 2n/¢]. From (3.4), in terms of ¥, the inverse of
the effective action after » steps becomes (rescaled to the unitary lattice)

- (P+IN\|* x_,(P+! L
W"(—L") D < ) Im#|<2 (3.8)

For the usual rescaled average [ie., W(x)=L* for xeb§, « related to the
field dimension], using (3.7), we have

1

ﬁ(;)](p)= ) T

{=2nm

4 sin’(p,L"/2)

'W"(p)|2=L2m(uI;[l Sinz(p,,/2) (39)
and
pip= T[] —i D gy

remzd uet LPu+ 1227 (p+1)?

fora= —(d+1)/2.

Now, from (3.10), we note the problem with the effective actions as
indicated before. D' is a periodic function (Fourier transform of a func-
tion in the unitary lattice) with period 2m, so DZ'|,(p,= —n)=
ﬁ;‘l‘, (p,=m). But it is easy to see that DZ' is also an odd function
(D', (py=—n)=—-D3'",(p,=n)] Thus D'|, (p,=n)=0, and the
inverse (D) does not even exist at these points (anyway, we abusively
maintain the notation DJ'). Before trying to solve this problem con-
sidering other averages, we prove a simple but important result.

Lemma 3.1. For any real W(x), xeZ¢ the corresponding D 7' lu
vanishes at p, =7

Proof. For real W(x),

Wip)= Y W(x)cos(p-x)—i Y W(x)sin(p-x)

xeZd xeZd
= A(p)—iB(p)

with A(p) and B(p) real, 4 an even function, and B odd. Hence,
|W(p)|2 = A%(p) + B*(p) is an even function, which is enough to prove the
lemma: from (3.8) and (3.7),

Aoty 2 —iy-(p+])
D (p)—IEZZd [flp+DI X

with f (function of W) even, and so 5;‘ odd with period 2=, ie.,
D', (py=m)=0. |
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This lemma says that the consideration of complex averages is a must.

Thus, we propose to investigate the average given by the usual one
[ie, W(x) constant for x inside the block b with L? points and centered
at zero, and vanishing outside it] plus a small complex perturbation
properly chosen to break the undesirable symmetry of the fixed point
(which makes D ;‘ vanish, as described above). We take, for the Fourier
transform of W(x), x in the unitary lattice, L odd,

d
Wp)=L"T] {(1+5sin ALY lxe“"""‘"} (3.11)
p=1 lxul < L/2
(=0 gives the wusual formula). In the position space, W(x)=
L*[12_, W,(x,) with
W.(x,)=id/2, x,=—(L-1)2-1

=1+i62, x,=—(L—1)2

=1, x,=—(L-1)24+m, me{l,2,.,L-2}
=1-i82,  x,=(L—1)2
= —i5/2,  x,=(L—1)2+1 (3.12)

Note that the perturbation changes, in relation to the usual average, only
points in the boundary of a block (and that the average of one block con-
siders even sities outside it).

Now, starting with the Wilson action, we get

d n 2
~ . +1,]
D(nf(P)= Z Lx+1—d)n H { 1496 Z sm(_[_p#_Lk_#>+@(5z)
lmyl < L2 p=1 k=1
I=2rme2nZd
sin*([p, +1,3/2) } —#y-(p+))
— 5 (3.13)
sin®([p, +1,1/2L") (p+1)

that is, an effective action still periodic (with period 2x), but no longer an
odd function (unitarity is also lost), which avoids the vanishing at p, =m.
Observe also that the new action has not been changed at p=0.

The next section is devoted to proving that this (technical) small
perturbation is enough to give us an RG transformation with the required
properties: orthogonality between scales and locality of the effective actions
(besides locality of the fluctuation field two-point function I; and the
minimizer M, etc.).
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4. DECAY PROPERTIES

In this section we prove the theorem of Section 2 for the RG transfor-
mation proposed here, that is, we establish the uniform exponential decay
for the effective actions Dj, fluctuation two-point functions I'(;, and
minimizers M ;. The proofs are carried out showing boundedness and
analyticity of the Fourier transform of the operators in a small complex
strip

Tc= {lIm(pl)l <a,a Re(pls"" pd)E (_7[’ n]d}

resulting in exponential decay in the p=1 direction and, by symmetry, in
all directions.

Considering the initial lattice in £Z“, we write the average Wj(p) as
(for the final lattice in L/gZ)

d
Wip)=T1 %;.p)w(ep,) (4.1)
u=1
where W,;(-) is the usual average (without the scaling factor) and
h “(p)—% (¢p,) the perturbation [4, =4, %,(p)=1+Jsin p,; see (_3.11),
and (3.7) for the relation between %, and ‘6]. We have, for gel,(L/eZ9),
fel,(eZ?), and 9%(p)=(e"* —1)/a,

(3““(,!)-&—/)~
€ (p+])——m— +1 4.2
(Q,1) ;,,11 kD a,,(p+1)f(P ) (4.2)
o (p+1)
©'2)" (p+0)=T1 Totp +1>(((—”)—> 2(p) (43)
n=1 u
where
n =mn |4 _ 2mm 4
pE(—E,L—ijI, [—L—js, mel
such that

d
p-%-l»e(—E E], L odd
g €
For the Dirac operator (Wilson version),

d d
sinnp, 1 —cosnp,
Din(p)=i 3 3,440 ¥ T”‘s y-K(p)+M(p) (44)

u=1 =1
—iy-K(p)+ M(p)
K*(p)+M?*p)

D (p)= (4.5)

and for the other operators we get the following result:
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Lemma 4.1. (a)

dp

WDm(p)eip.(x__‘_,)

D (x, x')=J

- abs(Soate+n 11

p=1

p+1

x ;t(p+1) 2}>*leip-(.\'—.\")
op+1)
(b)
Twwx)=% ] 2n) Di}(p' +1') Dy 1y, 1(p) Digh (p' +1)
aL(p'
)ATT | Gulp' + 1) 22—
{# ! a,(p'+1)
0. (p'+1')
# (g‘ /+l
H[ <a,1( 1)) Ap D
x l‘(p +1):l e~i(l*l’)<.\"} eil-(.\'—.\")eip'»(.\'—.\")
a,(p' +1)
(c)

p+1 _m
D(q)Ql\D(k) », X J.(z )dz Hl{ < )(aZ(p'i'[))}

I u
X Dl (p+1) Dyg(p)et? 0 re =i

for x,x'e€Z’ yeL *Z¢ pe(—mn]9 [=2mm, meZ* such that
p+le(—Lfn, L*z]“ in (a), (c); pe(—n/L,n/L]%, [, 1'=2nm/L, meZ?
such that p+1, p+1'e(—n,n]%in (b).

Proof. Immediate for (a) and (c). For (b) we use the momentum-
space representation of I, [expression below (2.7)], write the first term
D' as

DN p+D=D; (p+1) D i(p) Dl \(p)

=D (p+ D) D (P)ODI'QT ()] [see (2.24)]

and use the expressions (4.2) and (4.3) for Q and Q' above. Then, some
manipulations lead to the final formula. |
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We obtain the necessary bounds for the Fourier transform of the
operators in the theorem of Section 2 after separating a factor D, in the
integrands of Lemma 4.1 (in order to treat possible singularities).

Theorem 4.1. (a)

D(k)(p) = U_I(P) D(:,)(P)

p+ I\ p+D)|?
cgk'“( I >“_

U(p) analyticin T, pe(—mn, n]%, |=2mm, meZ% p+Ile(—L*n, L*n]",

U(p)=D(p) XDy (p+1) []
! p=1

|U(p)l <c, U~ (p)l <c, peT,
(b)
Dy, (p)=V " (p) Dy p)

p+l>6,’;(p+l) 2

d
Vi =D D«l l I(g
(P)=Da PTG} +1) T |45 +1) (s op+1)

V(p) analytic in T,, pe(—n/L,n/L]¢, [=2mm/L, meZ¢ p+le
(—L¥m, L*n 14,

Vipli<e, IV7'p)i<c, peT.

(c) D, (p) analytic in T,, |D,(p)l <c; D(,,)(p+l) analytic in T,
for 1#£0,

Dy (p+ Dl <c(l+|p+1)~"

In the proof we use the following lemmas (already established in
Section IIT of ref. 5).

Lemma 4.2. For peT., K(p), M(p), and [sin(p/2))/[n""*
sin(n[ p+1]/2)] are analytic and have the following bounds:

sin(p,/2)
“tsin{n(p, +1,)/2]
(b) |K(p+1)<c(l+11)
() IM(p+hl<c(l+]1])

(a) <c(1+11,n7!

T.={p:dist(p,, (-7, t])<7/2, (P3pes PJ)E(—m, ] '}
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Lemma 4.3. For pe T/, (K*+ M?*)~!(p+1) is analytic and

K2+ M*)(p'+ D zc(l+]p +1),  1#0, p'e(-mn]"
(K> +M?)~! (p+ D <c(1+(1)7!

where T!={p|dist(p,, (—m, n])<r, (P2r Pa)E(—m w]?}, r defined
below.

Lemma 4.4. (a)

d! 2 o, (p+1

;,(p)‘z_’ WP )‘ LA R S S ——
ap)l m aMp+Dl 2lp,+1d

(b)

IK(p)|>clpl; nipl>n/2, preal, pe(—mn,n]% c=(2/n)
(c)
P <K*gq)+ M3 q)<cq’;  nlgl<m, g real

1
Kz(p+l)+M2(p+l)>F|l|2

1=2nm, meZ?, p+le(—L*n, LFn]?

The proof of Lemma 4.3 considers the result on the reciprocal of an
analytic function: for f(z) analytic in |z| <R with sup, <z |f(z)| <M
and f(0)=m, it follows that 1/f(z) is analytic in |z| <r=|m|R/4M with
[1/f(z)| < 2/|m|. Hence, the upper bound for (K24 M?2)~! (details in ref. 5).
The proofs of Lemmas 4.2 and 4.4 are elementary (single estimates).

Now we turn to the following proof.

Proof of Theorem 4.1. Assumption (a). For the upper bound on
U(p) we use

€(p+ip')=1+dsin(p,+ip,)=exp[dsin(p,+ ip,)] + O(5%)

Hence [note that 6 and p), are small (<1)],

- 1 st k . ) l st
‘gk#<p+L#>’ < |exp {5 Y sin (%)}+0((52)
j=1

k
<exp |:25 Y sin <p“Lle">] + 0(8%)

Jj=1
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for large L and small p’ (the sum is bounded by 3). With this bound and
Lemmas 4.2 and 4.3, separating the /=0 term, we obtain

[IK(p) + M(p)ITIK(p+ DI+ | M(p+1)]
I(K*+M*)(p+1)|

Ul <cte Y

1#0
d sin(p,/2) |* 1
<11 sin[n(pw,,)/z] (/2)~2

u=1

<t X gy 1+|1 <

1#0 pn

To get the lower bound we analyze the £ - oo limit of the expression
for U(p) (similar calculations follow for finite k)

2

(p+1) err
Ulp)=iy-p —_— %,(+U
/E"ZRZ" p+1)2 1;_:[ ! u+lu

=iy-px —iy-f(p)
where €, (p+1)=lim,_ , %, ((p+D)/L*).

We note that U(p) ——5> 1, and so it is necessary to investigate the
expression only for p away from zero. We write

b, (p+1)=exp {5 Z sin (p“L +/, >}+(9(52)

i=1

=exp{dh(p,+1,)} + 0(6?)

and hence

(p+1) & e — 112

(p+1)? 2,

y- f(p)—z’ exp{Sh(p,+1,)} +0(5%)

TR

For p,=n (where U vanishes with the usual average, see Section 3),

"4 5 exp{20h(n+1,)}
n -+,

fdp)=73% TI

L#ly vip

Y/ ' )V —
xp{dh(p, +1)} =y

i
x , s+ 0(8°
CE RS S PR AL

The /, sum may be written as

= 1 2sinh[28h(nm)]

nt (nm)?+ b? > csinh 9, b*= 3 (p.+1)

n=1 vFE U
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where we used that h(x)= —A(—x). For 0<p, <=, we also get
i { exp{20h(nmn+p,)}
[(nm+p,)* +b*1(nm +p,)

exp{ —20h(nm +2n—p,)}
[(nn+2n—p, )+ b (nn+2n—p,)

n=0

}chinhé

Similar analysis follows for negative p. For complex values p + ip’, with p’
small enough (p’ =~ ), we still have

6.(pu+1,+ip,)| =exp{Sh(p,+1,)} + O(5)

which leads to the same bound.

Since U~'(p)=iy-f(p)f*(p)x —iy-p/p>, we obtain |U~'(p)<
¢/sinh 9, proving part (a) of the theorem.

Part (b) is similar, and part (c) comes from Lemmas 4.2 and 4.3. ||

Finally, the theorem stated in Section 2 follows from the Theorem 4.1
and Lemma 4.1.

5. INTERACTING FERMIONS AND FINAL COMMENTS

Using the RG transformation proposed here, we shall obtain a formula
for the generating function of interacting fermions similar to that for the
bosonic case (2.4), ie., written in terms of two propagators P, and G,
(given by 3 c; M jl"ijT), an irrelevant potential V,, and fields related to
the minimizers M, and local effective interactions D,,. In fact, starting with
an action such as four fermions plus the Dirac action (properly written)
and applying the RG transformation to the generating function, following
procedures similar to those considered for the scalar case (see Section 2
and refs. 3 and 4), i.e., separating the quadratic part and using the orthogonal
property, after n steps we get

Z(h, h) = cexp{3(h, P,h)}

x [ exp{—V,(M,§ + G,y M, +G,h) = $b,(§, D)} i dp

with simple expressions for P, and G, (such as chijMjT), and
uniform exponential decay for M, and D,, that is, a formalism which shall
make easier the analysis of correlation functions.

Another question to be investigated is the connection between
wavelets and the structures associated with the scale decomposition as
pointed out in Section 2.°*%
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As a final comment, we emphasize that the RG formalism is con-
sidered here only as a useful technical tool, a formalism related to a scale
decomposition: we do not assume it as a map “from Hamiltonians to
Hamiltonians” (see ref. 6 for problems with such an assumption). Due to
properties such as orthogonality between scales, the RG mechanism shall
make easier the study and control of the physical correlation functions
describing the initial models, although mapping them on “strange” systems
(the transformation breaks unitarity). It is also worth remembering that
the “exotic” perturbation in the transformation does not change the
effective actions at small momenta, i.e., large distances.
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